Evolutionarily stable family ties: Max Weber meets Charles Darwin

Ingela Alger and Jörgen Weibull

May 8, 2014

1 Introduction

- Question: how much should one expect siblings to care for each other?
 - Alger and Weibull (AER 2010): "Kinship, incentives and evolution"
- Siblings may be an important source of help
 - help may be in kind or monetary
 - particularly important when formal insurance is weak
- Potentially important fitness consequences
- Preferences inherited from parents (genetically and/or culturally)

- Apply the general model of evolutionary stability of traits:
 - interaction? two-stage interactions between sibling pairs: independent production decisions in the first stage, potential helping in the second stage
 - heritable trait? degree of altruism towards siblings
 - is the trait observable? yes

1.1 The plan for the rest of the talk

- The game and equilibrium strategies
 - interaction: strategies and material payoffs
 - altruism
 - equilibrium strategies (given the siblings' degrees of altruism)
- Evolutionary stability analysis
 - how much assortativity?
 - evolutionarily stable degrees of altruism
- Discussion

2 The game and equilibrium strategies

2.1 The interaction

- Time line:
- 1. A pair of siblings simultaneously choose productive efforts.
- 2. Each sibling's random output is realized, $y_i \in \{y^L, y^H\}$. It depends probabilistically on own effort.
- 3. The siblings observe the outputs and choose transfers to each other.
- Sibling *i*'s material utility:

$$\pi_{i} = \pi \left[\left(e_{i}, t_{i} \right), \left(e_{j}, t_{j} \right) \right] = E \left[b \left(y_{i} - t_{i} + t_{j} \right) \right] - c \left(e_{i} \right)$$

2.2 Preferences

Degree of altruism towards the sibling

$$u_i = \pi_i + \alpha_i \cdot \pi_j$$

- Set of potential traits: $\alpha_i \in (-1,1)$
- ullet Given degrees of altruism $lpha_A$ and $lpha_B$, the siblings play a game where:
- 1. Strategy: effort level, and transfer (conditional on outputs)
- 2. Payoff = total (expected) utility
- Assume: the siblings observe each other's degree of altruism

2.3 Equilibrium

2.3.1 The second period

- The siblings observe the outputs and choose transfers
- ullet In equilibrium: sibling i makes a transfer only if she is rich and j is poor
- ullet i's transfer is increasing in α_i

2.3.2 The first period

• The siblings correctly anticipate the future transfers, $t(\alpha_A)$ and $t(\alpha_B)$, and choose their efforts

• A pair
$$\left(e_A^*,e_B^*\right)\in [0,1]^2$$
 is a NE iff
$$\begin{cases} e_A^*\in \arg\max_{e_A}u_A\left(e_A,e_B|t\left(\alpha_A\right),t\left(\alpha_B\right)\right)\\ e_B^*\in \arg\max_{e_B}u_B\left(e_B,e_A|t\left(\alpha_B\right),t\left(\alpha_A\right)\right) \end{cases}$$

• Equilibrium efforts as functions of the degrees of altruism: $e\left(\alpha_A,\alpha_B\right)$ and $e\left(\alpha_B,\alpha_A\right)$

2.4 Expected equilibrium material payoffs

• Let $p(\alpha_A, \alpha_B)$ and $p(\alpha_B, \alpha_A)$ denote the corresponding success probabilities

• Expected equilibrium material payoffs:

$$\Pi(\alpha_{A}, \alpha_{B}) = p(\alpha_{A}, \alpha_{B}) p(\alpha_{B}, \alpha_{A}) b(y^{H})$$

$$+ [1 - p(\alpha_{A}, \alpha_{B})] [1 - p(\alpha_{B}, \alpha_{A})] b(y^{L})$$

$$+ p(\alpha_{A}, \alpha_{B}) [1 - p(\alpha_{B}, \alpha_{A})] b(y^{H} - t(\alpha_{A}))$$

$$+ p(\alpha_{B}, \alpha_{A}) [1 - p(\alpha_{A}, \alpha_{B})] b(y^{L} + t(\alpha_{B}))$$

$$- c[e(\alpha_{A}, \alpha_{B})]$$

3 Evolutionary stability analysis

- Imagine now a large population, in which all sibling pairs engage in the interaction described above
- Preferences -> behaviors -> material payoffs
- Note that the environment is captured by:
 - the ratio y^L/y^H
 - the way in which effort affects the success probability
- We will see that the environment plays a role in shaping altruism...

3.1 How much assortativity?

• Assumptions:

- a population of grown-ups where a proportion 1-arepsilon have the resident trait and the residual proportion has a mutant trait
- couples form randomly and are monogamous, and each couple has two children
- each child is equally likely to inherit each parent's type (traits are not gender specific)
- ullet Probability that the sibling of a child carrying the rare mutant trait also carries the mutant trait: $\sigma=1/2$

- Note: if mating is non-random, so that with some probability a mutant grown-up will settle only for a match with another mutant (and otherwise the mutant will have a random match): $\sigma > 1/2$
- Note: if a child with some probability adopts the family value of a randomly drawn grown-up in the population, a "cultural parent" (and otherwise adopts one of its parents' family values): $\sigma < 1/2$

3.2 Evolutionary stability

• $\alpha \in (-1,1)$ is evolutionarily stable against β if:

$$\Pi(\alpha,\alpha) > \frac{1}{2}\Pi(\beta,\alpha) + \frac{1}{2}\Pi(\beta,\beta)$$

• Let D be the evolutionary drift function:

$$D(\alpha) := \frac{d(RHS)}{d\beta}_{|\beta=\alpha|}$$

The evolutionary drift function.

Example:

ullet $y^L = \lambda y^H$, where $\lambda < 1$ measures output variability

• θ : return to effort parameter

• Environment: (λ, θ) : an environment (λ', θ') is harsher than another environment (λ, θ) if the low output is lower $(\lambda' \leq \lambda)$, and/or the marginal return to effort is smaller $(\theta' \leq \theta)$ with at least one strict inequality

Evolutionarily stable degree of altruism, as a function of output variability (λ) and marginal returns to effort (θ)

• Stable degree of altruism <i>lower</i> in harsher environments. Intuition?
• Free-rider effect stronger in harsher environments. More beneficial to mutate towards lower degrees of altruism.

Material benefit from sibling altruism

4 Discussion

- Our analysis suggests that the strength of sibling altruism depends on the environment
- Evolution by way of natural selection leads to weaker sibling altruism in harsher environments
- Some evidence that individualism developed in northwestern Europe prior to the industrial revolution:
 - In NW Europe, strong tendency among youngsters to seek employment in other families' farms
 - * Kussmaul (1981): in 1380, more than half of men in East Anglian villages were employees (servants or labourers)

- * Hajnal (1982): in 17th century England, "the unit of production was the husband and the wife and hired labor, not children"
- * Many similar references in Macfarlane (1992)
- "The great achievement of ... the ethical and ascetic sects of Protestantism was to shatter the fetters of the sib. These religions established ... a common ethical way of life in opposition to the community of blood, even to a large extent in opposition to the family." (Max Weber: The Religion of China)
- Evolution by way of natural selection may explain Weber's observation about the "fetters of the sib" without recourse to Protestantism as a cause: perhaps "nature" selects family ties, and families select religions that fit their values

- Today: evidence that family ties vary in strength
 - Alesina and Giuliano (2010)
 - Cohabitation between parents and adult children:
 - * An *inferior* good in the US [Rosenzweig and Wolpin (1993)]
 - * A normal good in Italy [Manacorda and Moretti (2006)]
 - Evidence of persistence: second and third generation Mexican-American families have stronger kin ties than white Anglo families (Keefe et al, 1979, Keefe, 1984)
- Could our theory help explain why some countries, such as Sweden, have such a large welfare state?
- In turn, what is the effect of this welfare state on family ties?

• See also Alger and Weibull (JTB 2012)

• There we also study the evolution of altruistic preferences under complete information

• Other classes of interactions

 General results on how the evolutionarily stable degree of altruism may depend on the specifics of the interaction